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Introduction: Solé and Munteanu (2004) (S&M) first suggested that the chemical reaction network 

of Earth’s atmosphere is topologically distinct from that of other planetary atmospheres. These authors 
speculated that the uniqueness of Earth’s atmospheric network is due to a nonlinear coupling between 
the biosphere and the atmosphere through the exchange of gases, implying that the network topology of 
Earth’s atmosphere reflects the presence of life. Furthermore, the coevolution of biosphere and 
atmosphere suggests that the network topologies of atmospheric chemical networks have the potential 
to serve as an agnostic biosignature, because such a description relies less on specific molecules but rather 
on the nature of the relationships among molecules. However, before atmospheric networks can be used 
as an astrobiological tool, their analysis requires further development. Here, we build upon S&M’s work 
and explore a more diverse set of atmospheric networks using new graphical representations and 
topological metrics to classify the network topologies of planetary atmospheres. 

Methods: We map the chemical reaction networks of Solar System atmospheres using reaction lists 
from the Caltech/JPL photochemical model KINETICS (Allen et al., 1981), a versatile and extensively 
validated code for simulating planetary atmospheric chemistry. Specifically, we analyze chemical reaction 
networks for: Venus (Zhang et al., 2012), Modern Earth (Yung et al., 2019, 1980), Mars (Nair et al., 
1994), early Mars/Earth (Adams et al., 2021), Jupiter (Moses et al., 2005), Titan (Willacy et al., 2016), 
and Pluto (Wong et al., 2017). Our network visualizations and analyses are performed primarily using 
NetworkX (Hagberg et al., 2008). 

Results: We visualize planetary atmospheres as force-directed unipartite networks, where nodes are 
chemical species linked by shared reactions. In Figure 1, node color denotes degree (the number of links 
it has) and node size denotes betweenness centrality (the number of shortest paths between other nodes 
in the network that pass through a node). This visualization allows us to qualitatively gauge network 
characteristics, such as symmetry, “hub” vs. “spoke” nodes, deceptively important nodes (low degree but 
high centrality), and node distance. 

We quantify network structure using a panoply of well-established network metrics including but 
not limited to: transitivity, degree distribution, centrality distributions, community detection 
algorithms, and hierarchical clustering. We also compare the metrics of atmospheric networks to 
equivalent random networks generated using the Erdős-Rényi model (Erdős and Rényi, 1959). 

While our modern Earth network does not follow a power-law degree distribution (contrasting with 
S&M’s findings), Earth can be distinguished via different metrics. For example, Figure 2 shows that 
Earth’s degree assortativity, a measure of whether nodes of similar degree are connected to one another, 
stands out against various planetary networks and is more similar to certain biological networks. This 
finding is not simply due to the unique number of nodes and edges in Earth’s network; when compared 
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to their equivalent random networks, Earth’s atmospheric network still stands out amongst the other 
planetary networks in this study. 

Discussion: We speculate that, in principle, it may be possible to use the topology of atmospheric 
chemical reaction networks as a sign of life. It is known that life on Earth exhibits common network 
structures across all scales, from biochemical to planetary (Kim et al., 2019). The modular hierarchical 
structure of biochemical networks hints at functionality, robustness, and error tolerance—attributes that 
would have been selected for via natural selection (Jeong et al., 2001, 2000; Ravasz et al., 2002). Just as 
the structures of biochemical networks have been honed by evolutionary processes to promote the 
survival of individual cells, it may be that any prolific, long-lived biosphere will evolve to exhibit 
persistence-enhancing features in its global-scale chemical networks. 

While informative, unipartite graphs offer a minimal description of chemical reaction networks 
because they lack any information about chemical abundances and reaction rates. Hence, we advocate for 
the use of weighted and directed network representations, which we plan to pursue in future work. Such 
representations will incorporate far more information about chemical networks, which are not merely 
characterized by whether species are present or absent, but also by their abundances and fluxes. If network 
metrics can robustly group stages of biological evolution across worlds with different geochemical 
contexts, this may help uncover a possible universal connection between life and planetary complexity 
and shed light on a theory of life at the planetary scale.  
 

 
 
 
 

Fig. 2 Network degree assortativity for various 
planetary atmospheres and biological networks. 
The lower the assortativity, the more 
heterogeneous the network is. This is one 
example of how the topology of modern Earth’s 
chemical network bears resemblance to that of 
biological networks. 
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Fig. 1 Solar System atmospheric networks. These 
diagrams represent the chemistry of planetary 
atmospheres as force-directed, unipartite, unweighted, 
undirected graphs. Nodes are colored by their degree 
and sized by their betweenness centrality. 
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